In previous works, we identified a RNA-binding protein in presynaptic terminal of squid neurons, which is likely involved in local mRNA processing. Evidences indicate this strongly basic protein, called p65, is an SDS-stable dimer protein composed of ~ 37 kDa hnRNPA/B-like subunits. The function of p65 in presynaptic regions is not well understood.
View Article and Find Full Text PDFThe posterodorsal medial amygdala (MePD) is a sex steroid-sensitive and sexually dimorphic subcortical area that dynamically modulates social behaviors in rats. As different microRNA (miRNA) can act as post-transcriptional regulators of synaptic processing, we addressed changes that occur in miRNA expression in the MePD of males and females along the estrous cycle. The expression of miR25-3p, miR132-3p, miR138-5p, miR181a-5p, miR195-5p, and miR199a-5p, involved in neuronal cytoskeleton remodeling and synaptic plasticity, were evaluated by RT-qPCR.
View Article and Find Full Text PDFThe presence of mRNAs in synaptic terminals and their regulated translation are important factors in neuronal communication and plasticity. Heterogeneous nuclear ribonucleoprotein (hnRNP) complexes are involved in the translocation, stability, and subcellular localization of mRNA and the regulation of its translation. Defects in these processes and mutations in components of the hnRNP complexes have been related to the formation of cytoplasmic inclusion bodies and neurodegenerative diseases.
View Article and Find Full Text PDFThe rat posterodorsal medial amygdala (MePD) has a remarkable neuronal plasticity and responds to olfactory/pheromonal stimuli to modulate emotional and reproductive behaviors. Glutamate is locally released by incoming sensorial pathways to establish and enforce synaptic inputs. Here, we combined DiI dye and immunolabeling procedure under confocal microscopy to describe the presence and distribution of glutamate receptors on neurons of the MePD of adult male rats.
View Article and Find Full Text PDF