The click beetles (Elateridae) represent the major and well-known group of the polyphagan superfamily Elateroidea. Despite a relatively rich fossil record of Mesozoic Elateridae, only a few species are described from the Upper Cretaceous Burmese amber. Although Elateridae spend most of their lives as larvae, our knowledge on immature stages of this family is limited, which is especially valid for the fossils.
View Article and Find Full Text PDFKnowledge of reliable geometries and associated intermolecular interaction energy (Δ) values at key fragments of the potential energy surface (PES) in the gas phase is indispensable for the modeling of various properties of the pyrene dimer (PYD) and other important aggregate systems of a comparatively large size (ca. 50 atoms). The performance of the domain-based local pair natural orbital (DLPNO) variant of the coupled-cluster theory with singles, doubles and perturbative triples in the complete basis set limit [CCSD(T)/CBS] method for highly accurate predictions of the Δ at a variety of regions of the PES was established for a representative set of pi-stacked dimers, which also includes the PYD.
View Article and Find Full Text PDFIn this article, we report a series of functionalized polyacetylene-type networks formed by chain-growth insertion coordination polymerization in high internal phase emulsions (HIPEs). All polymerized HIPEs (polyHIPEs) contain a hierarchically structured, 3D-interconnected porous framework consisting of a micro-, meso- and macropore system, resulting in exceptionally high specific surface areas (up to 1055 m·g) and total porosities of over 95%. The combination of π-conjugated and hierarchically porous structure in one material enabled the use of these polyacetylene polyHIPEs as adsorptive photocatalysts for the removal of chemical contaminants from water.
View Article and Find Full Text PDFLead-free halide double perovskite (HDP) CsAgBiBr has set a benchmark for research in HDP photoelectric applications due to its attractive optoelectronic properties. However, its narrow absorption range is a key limitation of this material. Herein, a novel dopant, palladium (Pd), is doped into CsAgBiBr and significantly extends the absorption to ≈1400 nm.
View Article and Find Full Text PDFThe benzene dimer (BD) is an archetypal model of π∙∙∙π and C-H∙∙∙π noncovalent interactions as they occur in its cofacial and perpendicular arrangements, respectively. The enthalpic stabilization of the related BD structures has been debated for a long time and is revisited here. The revisit is based on results of computations that apply the coupled-cluster theory with singles, doubles and perturbative triples [CCSD(T)] together with large basis sets and extrapolate results to the complete basis set (CBS) limit in order to accurately characterize the three most important stationary points of the intermolecular interaction energy (Δ) surface of the BD, which correspond to the tilted T-shaped (TT), fully symmetric T-shaped (FT) and slipped-parallel (SP) structures.
View Article and Find Full Text PDF