Publications by authors named "J Bruniaux"

Unlike Quality by Testing approach, where products were tested only after drug manufacturing, Quality by Design (QbD) is a proactive control quality paradigm, which handles risks from the early development steps. In QbD, regression models built from experimental data are used to predict a risk mapping called Design Space in which the developers can identify values of critical input factors leading to acceptable probabilities to meet the efficacy and safety specifications for the expected product. These empirical models are often limited to quantitative responses.

View Article and Find Full Text PDF

Background: Cerium (Ce) is a rare earth element, rapidly oxidizing to form CeO, and currently used in numerous commercial applications, especially as nanoparticles (NP). The potential health effects of Ce remain uncertain, but literature indicates the development of rare earth pneumoconiosis accompanied with granuloma formation, interstitial fibrosis and inflammation. The exact underlying mechanisms are not yet completely understood, and we propose that autophagy could be an interesting target to study, particularly in macrophages.

View Article and Find Full Text PDF

The association between superparamagnetic iron oxide nanoparticles (SPION), carrying small interfering RNA (siRNA) as therapeutic agents and humanized anti- human epidermal growth factor receptor-2 (HER2) single-chain antibody fragments (scFv) for the active delivery into HER2-overexpressing cells appears as an interesting approach for patients with HER2-overexpressing advanced breast cancer. The obtained Targeted Stealth Magnetic siRNA Nanovectors (TS-MSN) are formulated by combining: (i) the synthesis protocol of Targeted Stealth Fluorescent Particles (T-SFP) which form the core of TS-MSN and (ii) the formulation protocol allowing the loading of T-SFP with polyplexes (siRNA and cationic polymers). TS-MSN have suitable physico-chemical characteristics for intravenous administration and protect siRNA against enzymatic degradation up to 24 h.

View Article and Find Full Text PDF

The endogenous mechanism of RNA interference is more and more used in research to obtain specific down-regulation of gene expression in diseases such as breast cancer. Currently, despite the new fields of study open up by RNA interference, the rapid degradation of siRNA by nucleases and their negative charges prevent them from crossing cell membranes. To overcome these limitations, superparamagnetic iron oxide nanoparticles (SPIONs) represent a promising alternative for nucleic acid delivery.

View Article and Find Full Text PDF

Current efforts in nanofluidics aimed at detecting scarce molecules or particles are focused mainly on the development of electrokinetic-based devices. However, these techniques require either integrated or external electrodes, and a potential drop applied across a carrier fluid. One challenge is to develop a new generation of electroless passive devices involving a simple technological process and packaging without embedded electrodes for micro- and nanoparticles enrichment with a view to applications in biology such as the detection of viral agents or cancers biomarkers.

View Article and Find Full Text PDF