Background: Dyslipidaemia in patients with diabetes contributes to the risk of atherosclerotic cardiovascular disease. We aimed to identify a dyslipidemic profile associated with both dysglycemia and subclinical coronary atherosclerosis.
Methods: Study participants (n = 5050) were classified in three groups: normoglycemia, pre-diabetes, and diabetes.
The mechanisms underlying endothelial dysfunction in Type 1 and Type 2 diabetes (T1DM and T2DM) are unresolved. The red blood cells (RBCs) with increased arginase activity induce endothelial dysfunction in T2DM, but the implications of RBCs and the role of arginase inhibition in T1DM are unexplored. We aimed to investigate the differences in endothelial function in patients with T1DM and T2DM, with focus on RBCs and arginase.
View Article and Find Full Text PDFTryptophan is catabolized by gut microorganisms resulting in a wide range of metabolites implicated in both beneficial and adverse host effects. How gut microbial tryptophan metabolism is directed towards indole, associated with chronic kidney disease, or towards protective indolelactic acid (ILA) and indolepropionic acid (IPA) is unclear. Here we used in vitro culturing and animal experiments to assess gut microbial competition for tryptophan and the resulting metabolites in a controlled three-species defined community and in complex undefined human faecal communities.
View Article and Find Full Text PDFAims: Hypertriglyceridaemia (hTG) is associated with atherosclerotic cardiovascular disease, pancreatitis, and non-alcoholic fatty liver disease (NAFLD) in large population-based studies. The understanding of the impact of hereditary hTG and cardiometabolic disease status on the development of hTG and its associated cardiometabolic outcomes is more limited. We aimed to establish a multigenerational cohort to enable studies of the relationship between hTG, cardiometabolic disease and hereditary factors.
View Article and Find Full Text PDF