Complex traits often exhibit complex underlying genetic architectures resulting from a combination of evolution from standing variation, hard and soft sweeps, and alleles of varying effect size. Increasingly, studies implicate both large-effect loci and polygenic patterns underpinning adaptation, but the extent that common genetic architectures are utilized during repeated adaptation is not well understood. Sea age or age at maturation represents a significant life history trait in Atlantic Salmon (), the genetic basis of which has been studied extensively in European Atlantic populations, with repeated identification of large-effect loci.
View Article and Find Full Text PDFDomestication is rife with episodes of interbreeding between cultured and wild populations, potentially challenging adaptive variation in the wild. In Atlantic salmon, , the number of domesticated individuals far exceeds wild individuals, and escape events occur regularly, yet evidence of the magnitude and geographic scale of interbreeding resulting from individual escape events is lacking. We screened juvenile Atlantic salmon using 95 single nucleotide polymorphisms following a single, large aquaculture escape in the Northwest Atlantic and report the landscape-scale detection of hybrid and feral salmon (27.
View Article and Find Full Text PDFBody-element content was measured for three life stages of wild Atlantic salmon Salmo salar from three distinct Newfoundland populations as individuals crossed between freshwater and marine ecosystems. Life stage explained most of the variation in observed body-element concentration whereas river of capture explained very little variation. Element composition of downstream migrating post-spawn adults (i.
View Article and Find Full Text PDF