Publications by authors named "J Braudeau"

Background: The primary criteria for diagnosing mild cognitive impairment (MCI) due to Alzheimer's Disease (AD) or probable mild AD dementia rely partly on cognitive assessments and the presence of amyloid plaques. Although these criteria exhibit high sensitivity in predicting AD among cognitively impaired patients, their specificity remains limited. Notably, up to 25% of non-demented patients with amyloid plaques may be misdiagnosed with MCI due to AD, when in fact they suffer from a different brain disorder.

View Article and Find Full Text PDF

Alzheimer's disease (AD) was first characterized by Dr. Alois Alzheimer in 1906 by studying a demented patient and discovering cerebral amyloid plaques and neurofibrillary tangles. Subsequent research highlighted the roles of Aβ peptides and tau proteins, which are the primary constituents of these lesions, which led to the amyloid cascade hypothesis.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a continuum of events beginning with an increase in brain soluble Aβ42 followed by the appearance of hyperphosphorylated tau (P-tau, asymptomatic stage). Mild Cognitive Impairment (MCI) then appears (prodromal stage). However, the individual contribution of these two soluble proteins in the onset of the first cognitive symptoms remains unclear.

View Article and Find Full Text PDF

Background: Though our understanding of Alzheimer's disease (AD) remains elusive, it is well known that the disease starts long before the first signs of dementia. This is supported by the large number of symptomatic drug failures in clinical trials and the increased trend to enroll patients at predementia stages with either mild or no cognitive symptoms. However, the design of pre-clinical studies does not follow this attitude, in particular regarding the choice of animal models, often irrelevant to mimic predementia Late Onset Alzheimer's Disease (LOAD).

View Article and Find Full Text PDF

Exosomes represent a strategy for optimizing the adeno-associated virus (AAV) toward the development of novel therapeutic options for neurodegenerative disorders. However, spreading of exosomes and AAVs after intracerebral administration is poorly understood. This study provides an assessment and comparison of the spreading into the brain of exosome-enveloped AAVs (exo-AAVs) or unassociated AAVs (std-AAVs) through optical imaging techniques like probe-based confocal laser endomicroscopy (pCLE) and fluorescence microscopy.

View Article and Find Full Text PDF