Publications by authors named "J Brandon McClimon"

Using a model system of poly(methyl methacrylate)-grafted silica nanoparticles (PMMA-NP) and poly(styrene--acrylonitrile) (SAN), we generate unique polymer nanocomposite (PNC) morphologies by balancing the degree of surface enrichment, phase separation, and wetting within the films. Depending on the annealing temperature and time, thin films undergo different stages of phase evolution, resulting in homogeneously dispersed systems at low temperatures, enriched PMMA-NP layers at the PNC interfaces at intermediate temperatures, and three-dimensional bicontinuous structures of PMMA-NP pillars sandwiched between two PMMA-NP wetting layers at high temperatures. Using a combination of atomic force microscopy (AFM), AFM nanoindentation, contact angle goniometry, and optical microscopy, we show that these self-regulated structures lead to nanocomposites with increased elastic modulus, hardness, and thermal stability compared to analogous PMMA/SAN blends.

View Article and Find Full Text PDF

Several key features of nanoscale friction phenomena observed in experiments, including the stick-slip to smooth sliding transition and the velocity and temperature dependence of friction, are often described by reduced-order models. The most notable of these are the thermal Prandtl-Tomlinson model and the multibond model. Here we present a modified multibond (mMB) model whereby a physically-based criterion-a critical bond stretch length-is used to describe interfacial bond breaking.

View Article and Find Full Text PDF

Lateral resolution and accuracy in scanning probe microscopies are limited by the nonideality of piezoelectric scanning elements due to phenomena including nonlinearity, hysteresis, and creep. By taking advantage of the well-established atomic-scale stick-slip phenomenon in contact-mode atomic force microscopy, we have developed a method for simultaneously indexing and measuring the spacing of surface atomic lattices using only Fourier analysis of unidirectional linescan data. The first step of the technique is to calibrate the X-piezo response using the stick-slip behavior itself.

View Article and Find Full Text PDF

The large-scale growth of semiconducting thin films on insulating substrates enables batch fabrication of atomically thin electronic and optoelectronic devices and circuits without film transfer. Here an efficient method to achieve rapid growth of large-area monolayer MoSe films based on spin coating of Mo precursor and assisted by NaCl is reported. Uniform monolayer MoSe films up to a few inches in size are obtained within a short growth time of 5 min.

View Article and Find Full Text PDF