Publications by authors named "J Bramson"

Natural Killer (NK) cells are critical innate immune cells involved in the clearance of virally infected and malignant cells. Human NK cells are distinguished by their surface expression of CD56 and a lack of CD3. While CD56 expression and cell surface density has long been used as the prototypic marker to characterize primary human NK cell functional subsets, the exact functional role of CD56 in primary human NK cells is still not fully understood.

View Article and Find Full Text PDF

Individuals with systemic sclerosis (SSc) are particularly susceptible to SARS-CoV-2 infections, yet it remains to be determined if they generate humoral and cellular responses comparable to controls following SARS-CoV-2 vaccinations. Herein, we collected blood and serum after second, third, and fourth SARS-CoV-2 vaccinations in patients with SSc and controls. Following each dose, participants with SSc mounted comparable serum anti-RBD IgG, anti-RBD IgA, and spike-specific CD4 and CD8T cell responses to those found in controls.

View Article and Find Full Text PDF

Background & Aims: Intestinal epithelial cell (IEC) damage is a hallmark of celiac disease (CeD); however, its role in gluten-dependent T-cell activation is unknown. We investigated IEC-gluten-T-cell interactions in organoid monolayers expressing human major histocompatibility complex class II (HLA-DQ2.5), which facilitates gluten antigen recognition by CD4 T cells in CeD.

View Article and Find Full Text PDF

Proximity-induction of cell-cell interactions via small molecules represents an emerging field in basic and translational sciences. Covalent anchoring of these small molecules represents a useful chemical strategy to enforce proximity; however, it remains largely unexplored for driving cell-cell interactions. In immunotherapeutic applications, bifunctional small molecules are attractive tools for inducing proximity between immune effector cells like T cells and tumor cells to induce tumoricidal function.

View Article and Find Full Text PDF

Background: Initiation of antitumor immunity is reliant on the stimulation of dendritic cells (DCs) to present tumor antigens to naïve T cells and generate effector T cells that can kill cancer cells. Induction of immunogenic cell death after certain types of cytotoxic anticancer therapies can stimulate T cell-mediated immunity. However, cytotoxic therapies simultaneously activate multiple types of cellular stress and programmed cell death; hence, it remains unknown what types of cancer cell death confer superior antitumor immunity.

View Article and Find Full Text PDF