Am J Physiol Cell Physiol
March 2024
We studied urea, thiourea, and methylurea transport and interaction in human red blood cells (RBCs) under conditions of self-exchange (SE), net efflux (NE), and net influx (NI) at pH 7.2. We combined four methods, a four-centrifuge technique, the Millipore-Swinnex filtering technique, the continuous flow tube method, and a continuous pump method to measure the transport of the C-labeled compounds.
View Article and Find Full Text PDFPolyethylenes endowed with low densities of in-chain hydrolyzable and photocleavable groups can improve their circularity and potentially reduce their environmental persistency. We show with model polymers derived from acyclic diene metathesis polymerization that the simultaneous presence of both groups has no adverse effect on the polyethylene crystal structure and thermal properties. Post-polymerization Baeyer-Villiger oxidation of keto-polyethylenes from non-alternating catalytic ethylene-CO chain growth copolymerization yield high molecular weight in-chain keto-ester polyethylenes (M ≈50.
View Article and Find Full Text PDFWe determined the permeability (P, cm/s) of unmodified human red blood cells (HRBC) to urea (Pu), chloride (PCl), glucose (Pglu), and water diffusion (Pd) under conditions of self-exchange (SE) with the continuous flow tube method at pH 7.2, 25°C. Among 24 donors, Pu at 1 mM varied >100%.
View Article and Find Full Text PDF