Publications by authors named "J Bokor"

Silicon-based quantum emitters are candidates for large-scale qubit integration due to their single-photon emission properties and potential for spin-photon interfaces with long spin coherence times. Here, we demonstrate local writing and erasing of selected light-emitting defects using femtosecond laser pulses in combination with hydrogen-based defect activation and passivation at a single center level. By choosing forming gas (N/H) during thermal annealing of carbon-implanted silicon, we can select the formation of a series of hydrogen and carbon-related quantum emitters, including T and C centers while passivating the more common G-centers.

View Article and Find Full Text PDF

The magnetoelectric behavior of epitaxial Fe-Ga microstructures on top of a (001)-oriented PMN-PT piezoelectric substrate is imaged with magnetic X-ray microscopy. Additionally, the micron-scale strain distribution in PMN-PT is characterized by X-ray microdiffraction and examined with respect to the results of the Fe-Ga magnetoelectric switching. The magnetic reorientation of Fe-Ga is found to be strongly correlated with size, shape, and crystallographic orientation of the microstructures.

View Article and Find Full Text PDF

Electrically controllable nonvolatile magnetic memories show great potential for the replacement of conventional semiconductor-based memory technologies. Here, we experimentally demonstrate ultrafast spin-orbit torque (SOT)-induced coherent magnetization switching dynamics in a ferromagnet. We use an ultrafast photoconducting switch and a coplanar strip line to generate and guide a ~9-picosecond electrical pulse into a heavy metal/ferromagnet multilayer to induce ultrafast SOT.

View Article and Find Full Text PDF

Carcass characteristics were studied in 80 young Hungarian red deer in different ages (12, 15, 18 and 20 months of age). In all age group 10 male and 10 female were slaughtered. The dressed carcass weight in skin varied between 53.

View Article and Find Full Text PDF

Magnetic domain wall (DW)-based logic devices offer numerous opportunities for emerging electronics applications allowing superior performance characteristics such as fast motion, high density, and nonvolatility to process information. However, these devices rely on an external magnetic field, which limits their implementation; this is particularly problematic in large-scale applications. Multiferroic systems consisting of a piezoelectric substrate coupled with ferromagnets provide a potential solution that provides the possibility of controlling magnetization through an electric field via magnetoelastic coupling.

View Article and Find Full Text PDF