Renal hypouricemia (RHUC) is a pathological condition characterized by extremely low serum urate and overexcretion of urate in the kidney; this inheritable disorder is classified into type 1 and type 2 based on causative genes encoding physiologically-important urate transporters, and , respectively; however, research on RHUC type 2 is still behind type 1. We herein describe a typical familial case of RHUC type 2 found in a Slovak family with severe hypouricemia and hyperuricosuria. clinico-genetic analyses including whole exome sequencing and functional assays, we identified an intronic variant, c.
View Article and Find Full Text PDFThe OAT1 () and OAT3 () urate transporters are located on the basolateral membrane of the proximal renal tubules, where they ensure the uptake of uric acid from the urine back into the body. In a cohort of 150 Czech patients with primary hyperuricemia and gout, we examined the coding regions of both genes using PCR amplification and Sanger sequencing. Variants p.
View Article and Find Full Text PDFRenal hypouricemia (RHUC) is caused by an inherited defect in the main reabsorption system of uric acid, (URAT1) and (GLUT9). RHUC is characterized by a decreased serum uric acid concentration and an increase in its excreted fraction. Patients suffer from hypouricemia, hyperuricosuria, urolithiasis, and even acute kidney injury.
View Article and Find Full Text PDFThe telecommunication world is experiencing the 5th generation (5G) networks deployment including the use of millimeter wave (mmW) frequency bands to satisfy capacity demands. This leads to the extensive use of optical communications, especially the optical fiber connectivity at the last mile access and the edge networks. In this paper we outline fiber and free space optics (FSO) technologies for use as part of the 5G optical fronthaul network.
View Article and Find Full Text PDF