In this work, we explore the series of diradical(oid)s based on 2,2'-(5,11-dihydroindolo[3,2-]carbazole-3,9-diyl)dimalononitrile (further referred to as ). Hydrogen atoms in the central benzenoid (CB) ring of are substituted by the series of substituents with various lengths of π-conjugated chain and electron-donating or electron-withdrawing properties to study how they modulate the diradical character of the parent compound. The diradical character of molecules increases up to 88-89% by two groups doubly bonded to both sides of the CB ring of in relative positions.
View Article and Find Full Text PDFWe discuss slip bonds, catch bonds, and the tug-of-war mechanism using mathematical arguments. The aim is to explain the theoretical tool of molecular potential energy surfaces (PESs). For this, we propose simple 2-dimensional surface models to demonstrate how a molecule under an external force behaves.
View Article and Find Full Text PDFThe Wittig reaction is one of the most important processes in organic chemistry for the asymmetric synthesis of olefinic compounds. In view of the increasingly acknowledged potentiality of the electric fields in promoting reactions, here we will consider the effect of the oriented external electric field (OEEF) on the second step of Wittig reaction (i. e.
View Article and Find Full Text PDFFirst synthesized in 1868, alizarin became one of the first synthetic dyes and was widely used as a red dye in the textile industry, making it more affordable and readily available than the traditional red dyes derived from natural sources. Despite extensive both experimental and computational analyses on the electronic effects of substituents on the shape of the visible spectrum of alizarin and alizarin Red S, no previous systematic work has been undertaken with the aim to fine tune the dominant absorption region defining its color by introducing other electron-withdrawing or electron-donor groups. For such, we have performed a comprehensive study of electronic effects of substituents in position C of alizarin by means of a time dependent DFT approach.
View Article and Find Full Text PDFThe use of oriented external electric fields (OEEFs) to promote and control chemical reactivity has motivated many theoretical and computational studies in the last decade to model the action of OEEFs on a molecular system and its effects on chemical processes. Given a reaction, a central goal in this research area is to predict the optimal OEEF (oOEEF) required to annihilate the reaction energy barrier with the smallest possible field strength. Here, we present a model rooted in catastrophe and optimum control theories that allows us to find the oOEEF for a given reaction valley in the potential energy surface (PES).
View Article and Find Full Text PDF