The increasing frequency and intensity of heatwaves driven by climate change significantly impact microbial communities in freshwater habitats, particularly eukaryotic microorganisms. Heterotrophic nanoflagellates are important bacterivorous grazers and play a crucial role in aquatic food webs, influencing the morphological and taxonomic structure of bacterial communities. This study investigates the responses of three flagellate taxa to heatwave conditions through single-strain and mixed culture experiments, highlighting the impact of both biotic and abiotic factors on functional redundancy between morphologically similar protist species under thermal stress.
View Article and Find Full Text PDFMicrobial environmental DNA and RNA (collectively 'eNA') originate from a diverse and abundant array of microbes present in environmental samples. These eNA signals, largely representing whole organisms, serve as a powerful complement to signals derived from fragments or remnants of larger organisms. Integrating microbial data into the toolbox of ecosystem assessments and biotic indices therefore has the potential to transform how we use eNA data to understand biodiversity dynamics and ecosystem functions, and to inform the next generation of environmental monitoring.
View Article and Find Full Text PDFWastewater treatment processes can eliminate many pollutants, yet remainder pollutants contain organic compounds and microorganisms released into ecosystems. These remainder pollutants have the potential to adversely impact downstream ecosystem processes, but their presence is currently not being monitored. This study was set out with the aim of investigating the effectiveness and sensitivity of non-target screening of chemical compounds, 18S V9 rRNA gene, and full-length 16S rRNA gene metabarcoding techniques for detecting treated wastewater in receiving waters.
View Article and Find Full Text PDFMicrobial communities in freshwater streams play an essential role in ecosystem functioning via biogeochemical cycling. Yet, the impacts of treated wastewater influx into stream ecosystems on microbial strain diversity remain mostly unexplored. Here, we coupled full-length 16S ribosomal RNA gene Nanopore sequencing and strain-resolved metagenomics to investigate the impact of treated wastewater on a mesocosm system (AquaFlow) run with restored river water.
View Article and Find Full Text PDF