Publications by authors named "J Bilello"

Article Synopsis
  • * The conference addressed a broad range of topics in antiviral science, including new antiviral drugs, vaccines, clinical trials, and strategies to tackle emerging viral threats.
  • * Keynote talks highlighted important issues like virus emergence in human-animal interactions and challenges in developing effective antivirals, with a summary provided for ICAR 2024 and a preview for the upcoming ICAR 2025 in Las Vegas.
View Article and Find Full Text PDF

Respiratory Syncytial Virus (RSV) causes severe respiratory infections and concomitant disease resulting in significant morbidity and mortality in infants, elderly, and immunocompromised adults. Vaccines, monoclonal antibodies, and small-molecule antivirals are now either available or in development to prevent and treat RSV infections. Although rodent and non-rodent preclinical animal models have been used to evaluate these emerging agents, there is still a need to improve our understanding of the pharmacokinetic (PK)-pharmacodynamic (PD) relationships within and between animal models to enable better design of human challenge studies and clinical trials.

View Article and Find Full Text PDF
Article Synopsis
  • HPIV-3 causes serious respiratory infections, and current small-animal models for studying it are inadequate, but AG129 mice effectively replicate the virus's effects.
  • Research showed that HPIV-3 targets specific lung cells and leads to significant lung damage, but does not spread between cohabitating infected and non-infected mice.
  • Treatment with GS-441524, a remdesivir component, decreased the virus in the lungs and improved lung health, suggesting AG129 mice are useful for testing new treatments and preventative measures for HPIV-3 in humans.
View Article and Find Full Text PDF

Acute respiratory viral infections, such as pneumovirus and respiratory picornavirus infections, exacerbate disease in COPD and asthma patients. A research program targeting respiratory syncytial virus (RSV) led to the discovery of GS-7682 (), a novel phosphoramidate prodrug of a 4'-CN-4-aza-7,9-dideazaadenosine -nucleoside GS-646089 () with broad antiviral activity against RSV (EC = 3-46 nM), human metapneumovirus (EC = 210 nM), human rhinovirus (EC = 54-61 nM), and enterovirus (EC = 83-90 nM). Prodrug optimization for cellular potency and lung cell metabolism identified 5'-methyl [()-hydroxy(phenoxy)phosphoryl]-l-alaninate in combination with 2',3'-diisobutyrate promoieties as being optimal for high levels of intracellular triphosphate formation and .

View Article and Find Full Text PDF