Publications by authors named "J Berrocal"

A newly designed C-symmetric disc-shaped chromophore, , features electron accepting naphthalene diimides linked to an electron donor BTT core. self-assembles in apolar solvents into highly ordered, chiral supramolecular fibers through π-π and 3-fold hydrogen-bonding interactions. This leads to a cooperative formation of plane-to-plane stacking of BTTs and J-aggregation of the outer NDIs.

View Article and Find Full Text PDF

Devising energy-efficient strategies for the depolymerization of plastics and the recovery of their structural components in high yield and purity is key to a circular plastics economy. Here, we report a case study in which we demonstrate that vinylogous urethane (VU) vitrimers synthesized from bis-polyethylene glycol acetoacetates (aPEG) and tris(2-aminoethyl)amine can be degraded by water at moderate temperature with almost quantitative recovery (≈98 %) of aPEG. The rate of depolymerization can be controlled by the temperature, amount of water, molecular weight of aPEG, and composition of the starting material.

View Article and Find Full Text PDF

High-voltage cathode materials are important for the implementation of high-energy-density Li-ion batteries. However, with increasing cut-off voltages, interfacial instabilities between electrodes and the electrolyte limit their commercial development. This study addresses this issue by proposing a new electrolyte additive, (3-aminopropyl)triethoxysilane (APTS).

View Article and Find Full Text PDF

This paper presents a theoretical investigation of the design of a new actuator type made of anisotropic colloidal particles grafted with stimuli-responsive polymer chains. These artificial muscles combine the osmotic actuation principle of stimuli-responsive hydrogels with the structural alignment of colloidal liquid crystals to achieve directional motion. The solubility of the stimuli-responsive polymer in the neutral state, its degree of polymerization, the salt concentration, and the grafting density of the polymer chains on the surface of the colloidal particles are investigated and identified as important for actuator performance and tunability.

View Article and Find Full Text PDF

The chemical upcycling of polymers is an emerging strategy to transform post-consumer waste into higher-value chemicals and materials. However, on account of the high stability of the chemical bonds that constitute their main chains, the chemical modification of many polymers proves to be difficult. Here, we report a versatile approach for the upcycling of linear and cross-linked polyureas, which are widely used because of their high chemical stability.

View Article and Find Full Text PDF