Publications by authors named "J Benstead"

Increased temperatures are altering rates of organic matter (OM) breakdown in stream ecosystems with implications for carbon (C) cycling in the face of global change. The metabolic theory of ecology (MTE) provides a framework for predicting temperature effects on OM breakdown, but differences in the temperature dependence of breakdown driven by different organismal groups (i.e.

View Article and Find Full Text PDF

Warming temperatures are altering communities and trophic networks across Earth's ecosystems. While the overall influence of warming on food webs is often context-dependent, increasing temperatures are predicted to change communities in two fundamental ways: (1) by reducing average body size and (2) by increasing individual metabolic rates. These warming-induced changes have the potential to influence the distribution of food web fluxes, food web stability, and the relative importance of deterministic and stochastic ecological processes shaping community assembly.

View Article and Find Full Text PDF

Saprotrophic fungi play important roles in transformations of carbon (C), nitrogen (N), and phosphorus (P) in aquatic environments. However, it is unclear how warming will alter fungal cycling of C, N, and P. We conducted an experiment with four aquatic hyphomycetes (Articulospora tetracladia, Hydrocina chaetocladia, Flagellospora sp.

View Article and Find Full Text PDF

Understanding the observed temperature dependence of decomposition (i.e., its "apparent" activation energy) requires separation of direct effects of temperature on consumer metabolism (i.

View Article and Find Full Text PDF

Tracking carbon (C) flow through ecosystems requires quantification of myriad biophysical processes, including C routing through microbial and metazoan food webs. Yet detailed organic matter budgets are rarely combined with simultaneous measurement of C flows supporting microbial and animal production. Here, we synthesize concurrent data sets on organic matter, microbes, and macroinvertebrates from two detritus-based stream ecosystems, one of which was subject to experimental nitrogen (N) and phosphorus (P) enrichment.

View Article and Find Full Text PDF