Publications by authors named "J Battalio"

The deep convective cloud-environment feedback loop is likely important to Titan's global methane, energy, and momentum cycles, just as it is for Earth's global water, energy, and momentum budgets. General circulation models of Titan's atmosphere are unable to explicitly simulate deep convection and must instead parameterize the impact of this important subgrid-scale phenomenon on the model-resolved atmospheric state. The goal of this study is to better quantify through cloud resolving modeling the effects of deep convective methane storms on their environment and to feed that information forward to improve parameterizations in global models.

View Article and Find Full Text PDF

The impact of methane convection on the circulation of Titan is investigated in the Titan Atmospheric Model (TAM), using a simplified Betts-Miller (SBM) moist convection parameterization scheme. We vary the reference relative humidity ( ) and relaxation timescale of convection () parameters of the SBM scheme. Titan's atmosphere is mostly insensitive to changes in , but convective instability and precipitation are highly impacted by changes in .

View Article and Find Full Text PDF

One of the first large cloud systems ever observed on Titan was a stationary event at the southern pole that lasted almost two full Titan days. Its stationary nature and large extent are puzzling given that low-level winds should transport clouds eastward, pointing to a mechanism such as atmospheric waves propagating against the mean flow. We use a composite of 47 large convective events across 15 Titan years of simulations from the Titan Atmospheric Model to show that Rossby waves trigger polar convection-which halts the waves and produces stationary precipitation-and then communicate its impact globally.

View Article and Find Full Text PDF

A high density of REMS wind measurements were collected in three science investigations during MSL's Bagnold Dunes Campaign, which took place over ~80 sols around southern winter solstice (Ls~90°) and constituted the first in situ analysis of the environmental conditions, morphology, structure, and composition of an active dune field on Mars. The Wind Characterization Investigation was designed to Available online 14 December 2016 fully characterize the near-surface wind field just outside the dunes and confirmed the primarily upslope/downslope flow expected from theory and modeling of the circulation on the slopes of Aeolis Mons in this season. The basic pattern of winds is 'upslope' (from the northwest, heading up Aeolis Mons) during the daytime (~09:00-17:00 or 18:00) and 'downslope' (from the southeast, heading down Aeolis Mons) at night (~20:00 to some time before 08:00).

View Article and Find Full Text PDF