Publications by authors named "J Bascou"

Manual wheelchair (MWC) locomotion exposes the user's upper-body to large and repetitive loads, which can lead to upper limbs pain and injuries. A thinner understanding of the influence of MWC settings on propulsion biomechanics could allow for a better adaptation of MWC configuration to the user, thus limiting the risk of developing such injuries. Advantageously compared to experimental studies, simulation methods allow numerous configurations to be tested.

View Article and Find Full Text PDF
Article Synopsis
  • The study reviews various methodologies used in research on manual wheelchair (MWC) configuration and its effects on user propulsion biomechanics, highlighting inconsistencies across different studies.
  • It includes a detailed analysis of 45 articles, revealing significant variations in how MWC configurations are described and tested, leading to potential gaps in critical information.
  • The review provides specific recommendations for future research, such as using consistent terminology in MWC configurations, documenting initial settings clearly, and considering experimental biases when reporting results.
View Article and Find Full Text PDF

During manual wheelchair (MWC) locomotion, the user's upper limbs are subject to heavy stresses and fatigue because the upper body is permanently engaged to propel the MWC. These stresses and fatigue vary according to the environmental barriers encountered outdoors along a given path. This study aimed at conducting a systematic review of the literature assessing the biomechanics of MWC users crossing various situations, which represent physical environmental barriers.

View Article and Find Full Text PDF

Background: The analysis of biomechanical parameters derived from the body center of mass (BCoM) 3D motion allows for the characterization of gait impairments in people with lower-limb amputation, assisting in their rehabilitation. In this context, magneto-inertial measurement units are promising as they allow to measure the motion of body segments, and therefore potentially of the BCoM, directly in the field. Finding a compromise between the accuracy of computed parameters and the number of required sensors is paramount to transfer this technology in clinical routine.

View Article and Find Full Text PDF

The analysis of the body center of mass (BCoM) 3D kinematics provides insights on crucial aspects of locomotion, especially in populations with gait impairment such as people with amputation. In this paper, a wearable framework based on the use of different magneto-inertial measurement unit (MIMU) networks is proposed to obtain both BCoM acceleration and velocity. The proposed framework was validated as a proof of concept in one transfemoral amputee against data from force plates (acceleration) and an optoelectronic system (acceleration and velocity).

View Article and Find Full Text PDF