Publications by authors named "J Barrios-Gonzalez"

Lovastatin has great medical and economic importance, and its production in Aspergillus terreus is positively regulated at transcriptional level, by reactive oxygen species (ROS) generated during idiophase. To investigate the role of the transcription factor Yap1 in the regulation of lovastatin biosynthesis by ROS, an orthologue of yap1 was identified in A. terreus TUB F-514 and knocked down (silenced) by RNAi.

View Article and Find Full Text PDF

Antimicrobial proteins and peptides are an alternative to current antibiotics. Here, we report an antimicrobial activity in a low-molecular-weight protein secreted naturally by Streptomyces lividans TK24 when glucose or glycerol were used as carbon sources. The antimicrobial activity was demonstrated against Bacillus subtilis, Bacillus cereus, Kokuria rhizophila, Clostridium sporogenes and Clavibacter michiganensis, causal pathogen of tomato bacterial canker; one of the most destructive bacterial diseases of this crop.

View Article and Find Full Text PDF
Article Synopsis
  • The study found that reactive oxygen species (ROS) play a crucial role in regulating the production of penicillin and cephalosporin C in the fungi Pencillium chrysogenum and Acremonium chrysogenum.
  • By manipulating internal ROS levels during fermentation, researchers observed that decreasing ROS led to significantly lower antibiotic production, while increasing ROS boosted production.
  • Gene expression analysis indicated that the regulation of antibiotic biosynthesis occurs at the transcriptional level, potentially involving stress-response transcription factors like Yap1, SrrA, and MsnA.
View Article and Find Full Text PDF

Background: Reactive oxygen species (ROS) trigger different morphogenic processes in filamentous fungi and have been shown to play a role in the regulation of the biosynthesis of some secondary metabolites. Some bZIP transcription factors, such as Yap1, AtfA and AtfB, mediate resistance to oxidative stress and have a role in secondary metabolism regulation. In this work we aimed to get insight into the molecular basis of this regulation in the industrially important fungus Penicillium chrysogenum through the characterization of the role played by two effectors that mediate the oxidative stress response in development and secondary metabolism.

View Article and Find Full Text PDF

Lovastatin, and its semisynthetic derivative simvastatine, has great medical and economic importance, besides great potential for other uses. In the last years, a deeper and more complex view of secondary metabolism regulation has emerged, with the incorporation of cluster-specific and global transcription factors, and their relation to signaling cascades, as well as the new level of epigenetic regulation. Recently, a new mechanism, which regulates lovastatin biosynthesis, at transcriptional level, has been discovered: reactive oxygen species (ROS) regulation; also new unexpected environmental stimuli have been identified, which induce the synthesis of lovastatin, like quorum sensing-type molecules and support stimuli.

View Article and Find Full Text PDF