G-quadruplexes (G4 s) are secondary, tetraplexed DNA structures abundant in non-coding regions of the genome, implicated in gene transcription processes and currently firmly recognised as important potential therapeutic targets. Given their affinity for human proteins, G4 structures are investigated as potential decoys and aptamers. However, G4 s tend to adopt different conformations depending on the exact environmental conditions, and often only one displays the specifically desired biological activity.
View Article and Find Full Text PDFThe Arenaviridae family of segmented RNA viruses contains nearly 70 species with several associated with fatal haemorrhagic fevers, including Lassa, Lujo and Junin viruses. Lymphocytic choriomeningitis arenavirus (LCMV) is associated with fatal neurologic disease in humans and additionally represents a tractable model for studying arenavirus biology. Within cultured cells, a high proportion of LCMV spread is between directly neighbouring cells, suggesting infectivity may pass through intercellular connections, bypassing the canonical extracellular route involving egress from the plasma membrane.
View Article and Find Full Text PDFCrystal structure and morphology dictate the mechanical, thermal, and degradation properties of poly l-lactide (PLLA), the structural polymer of the first clinically approved bioresorbable vascular scaffolds (BVS). New experimental methods are developed to reveal the underlying mechanisms governing structure formation during the crimping step of the BVS manufacturing process. Our research specifically examines the "U-bends" - the region where the curvature is highest and stress is maximised during crimping, which can potentially lead to failure of the device with dramatic consequences on patient life.
View Article and Find Full Text PDFPhys Rev Lett
October 2024
A search for the exclusive hadronic decays W^{±}→π^{±}γ, W^{±}→K^{±}γ, and W^{±}→ρ^{±}γ is performed using up to 140 fb^{-1} of proton-proton collisions recorded with the ATLAS detector at a center-of-mass energy of sqrt[s]=13 TeV. If observed, these rare processes would provide a unique test bench for the quantum chromodynamics factorization formalism used to calculate cross sections at colliders. Additionally, at future colliders, these decays could offer a new way to measure the W boson mass through fully reconstructed decay products.
View Article and Find Full Text PDFPhys Rev Lett
October 2024