Cholesterol plays a crucial role in biomembranes by regulating various properties, such as fluidity, rigidity, permeability, and organization of lipid bilayers. The latest version of the Martini model, Martini 3, offers significant improvements in interaction balance, molecular packing, and inclusion of new bead types and sizes. However, the release of the new model resulted in the need to reparameterize many core molecules, including cholesterol.
View Article and Find Full Text PDFWe describe a two-step approach for combining interactive molecular dynamics in virtual reality (iMD-VR) with free energy (FE) calculation to explore the dynamics of biological processes at the molecular level. We refer to this combined approach as iMD-VR-FE. Stage one involves using a state-of-the-art 'human-in-the-loop' iMD-VR framework to generate a diverse range of protein-ligand unbinding pathways, benefitting from the sophistication of human spatial and chemical intuition.
View Article and Find Full Text PDFExpert Opin Drug Discov
July 2022
Introduction: The potential of virtual reality (VR) to contribute to drug design and development has been recognized for many years. A recent advance is to use VR not only to visualize and interact with molecules, but also to interact with molecular dynamics simulations 'on the fly' (interactive molecular dynamics in VR, IMD-VR), which is useful for flexible docking and examining binding processes and conformational changes.
Areas Covered: The authors use the term 'interactive VR' to refer to software where interactivity is an inherent part of the user VR experience .
The coarse-grained Martini force field is widely used in biomolecular simulations. Here we present the refined model, Martini 3 ( http://cgmartini.nl ), with an improved interaction balance, new bead types and expanded ability to include specific interactions representing, for example, hydrogen bonding and electronic polarizability.
View Article and Find Full Text PDFThe main protease (Mpro) of the SARS-CoV-2 virus is one focus of drug development efforts for COVID-19. Here, we show that interactive molecular dynamics in virtual reality (iMD-VR) is a useful and effective tool for creating Mpro complexes. We make these tools and models freely available.
View Article and Find Full Text PDF