Publications by authors named "J Barjon"

Article Synopsis
  • The study investigates the purity levels of synthetic diamond crystals, highlighting the presence of boron and nitrogen impurities that affect their quality.
  • Using high-pressure high-temperature methods, researchers analyzed diamond crystals with varying impurity levels.
  • The findings suggest that cathodoluminescence is an effective technique for characterizing these impurities, which is important for determining the suitability of diamonds for electronic and quantum technologies.*
View Article and Find Full Text PDF

Ultrafine splittings are found in the optical absorption spectra of boron-doped diamond measured with high resolution. An analytical model of an exciton complex is developed, which permits assigning all absorption lines and sizing the interactions among the constituent charges and crystal field. We conclude that the entry of split-off holes in the acceptor-bound exciton fine structure yields two triplets separated by a spin-orbit splitting of 14.

View Article and Find Full Text PDF

Despite its simple crystal structure, layered boron nitride features a surprisingly complex variety of phonon-assisted luminescence peaks. We present a combined experimental and theoretical study on ultraviolet-light emission in hexagonal and rhombohedral bulk boron nitride crystals. Emission spectra of high-quality samples are measured via cathodoluminescence spectroscopy, displaying characteristic differences between the two polytypes.

View Article and Find Full Text PDF

2D boron nitride (2D-BN) was synthesized by gas-source molecular beam epitaxy on polycrystalline and monocrystalline Ni substrates using gaseous borazine and active nitrogen generated by a remote plasma source. The excess of nitrogen atoms allows to overcome the thickness self-limitation active on Ni when using borazine alone. The nucleation density and the shape of the 2D-BN domains are clearly related to the Ni substrate preparation and to the growth parameters.

View Article and Find Full Text PDF

Single photon emitters (SPEs) in low-dimensional layered materials have recently gained a large interest owing to the auspicious perspectives of integration and extreme miniaturization offered by this class of materials. However, accurate control of both the spatial location and the emission wavelength of the quantum emitters is essentially lacking to date, thus hindering further technological steps towards scalable quantum photonic devices. Here, we evidence SPEs in high purity synthetic hexagonal boron nitride (hBN) that can be activated by an electron beam at chosen locations.

View Article and Find Full Text PDF