We demonstrate that the presence of edges in a superconducting film made of a type-I/type-II bilayer stabilizes type-II/type-I hybrid (inter-type) flux patterns, as vortex clusters, chains, and gel phase. These patterns are very sensitive to primary parameters such as applied magnetic field, layer coupling, and temperature. Thus, the magnetization versus temperature curves, M(T), for many values of coupling were used to estimate the strength of the layer couplings, and also as a guide for obtaining sequentially the flux patterns.
View Article and Find Full Text PDFα-FeO samples were manufactured by means of the polymeric precursor method. The powders were sintered and calcined at temperatures of 300-700 °C for 2 h, respectively. In the X-ray diffraction results, the formation of the rhombohedral phase without secondary phases was exhibited.
View Article and Find Full Text PDFWe show how the inclusion of a structural defect of determined geometry controls the vortex state in a square superconducting sample in the presence of an external magnetic field and a current. We simulated the defects by using the deformation parameter , solving the non-lineal time-dependent Ginzburg-Landau equations and using the link variable method, for four different geometries as possible options for the storage vortex, simulating the behavior of a capacitor. We found an exponential dependence of the current in which the first vortex penetrates the sample as a function of the area of a square central defect in the sample.
View Article and Find Full Text PDF