Purpose: The purpose of this study was to investigate an extended self-adapting nnU-Net framework for detecting and segmenting brain metastases (BM) on magnetic resonance imaging (MRI).
Methods And Materials: Six different nnU-Net systems with adaptive data sampling, adaptive Dice loss, or different patch/batch sizes were trained and tested for detecting and segmenting intraparenchymal BM with a size ≥2 mm on 3 Dimensional (3D) post-Gd T1-weighted MRI volumes using 2092 patients from 7 institutions (1712, 195, and 185 patients for training, validation, and testing, respectively). Gross tumor volumes of BM delineated by physicians for stereotactic radiosurgery were collected retrospectively and curated at each institute.
Background: Volumetric reconstruction of magnetic resonance imaging (MRI) from sparse samples is desirable for 3D motion tracking and promises to improve magnetic resonance (MR)-guided radiation treatment precision. Data-driven sparse MRI reconstruction, however, requires large-scale training datasets for prior learning, which is time-consuming and challenging to acquire in clinical settings.
Purpose: To investigate volumetric reconstruction of MRI from sparse samples of two orthogonal slices aided by sparse priors of two static 3D MRI through implicit neural representation (NeRP) learning, in support of 3D motion tracking during MR-guided radiotherapy.
There is debate about why stereotactic body radiation therapy (SBRT) produces superior control of hepatocellular cancer (HCC) compared to fractionated treatment. Both preclinical and clinical evidence has been presented to support a "classic" biological explanation: the greater BED of SBRT produces more DNA damage and tumor cell kill. More recently, preclinical evidence has supported the concept of a "new biology", particularly radiation-induced vascular collapse, which increases hypoxia and free radical activation.
View Article and Find Full Text PDFBackground: Apparent diffusion coefficient is not specifically sensitive to tumor microstructure and therapy-induced cellular changes.
Purpose: To investigate time-dependent diffusion imaging with the short-time-limit random walk with barriers model (STL-RWBM) for quantifying microstructure parameters and early cancer cellular response to therapy.
Study Type: Prospective.