Interest in using (89)Zr is rapidly increasing for immuno-PET applications due to its unique characteristics and increased availability. The focus of this study was to develop an optimized semi-automated methodology for producing (89)Zr-oxalate/(89)Zr-chloride, and evaluate the potential application of (89)Zr-chloride for radiopharmaceutical compounding. The data presented herein will be useful for the production of (89)Zr-labeled radiopharmaceuticals and their compliance with regulatory issues for both preclinical and clinical use.
View Article and Find Full Text PDFWe synthesized two series of imatinib mesylate (STI-571) analogs to develop a Bcr-Abl and c-KIT receptor-specific labeling agent for positron emission tomography (PET) imaging to measure Bcr-Abl and c-KIT expression levels in a mouse model. The methods of molecular modeling, synthesis of STI-571 and its analogs, in vitro kinase assays, and radiolabeling are described. Molecular modeling revealed that these analogs bind the same Bcr-Abl and c-KIT binding sites as those bound by STI-571.
View Article and Find Full Text PDFEpigenetic modifications mediated by histone deacetylases (HDACs) play important roles in the mechanisms of different neurologic diseases and HDAC inhibitors (HDACIs) have shown promise in therapy. However, pharmacodynamic profiles of many HDACIs in the brain remain largely unknown due to the lack of validated methods for noninvasive imaging of HDAC expression-activity. In this study, dynamic PET/CT imaging was performed in 4 rhesus macaques using [(18)F]FAHA, a novel HDAC substrate, and [(18)F]fluoroacetate, the major radio-metabolite of [(18)F]FAHA, and fused with corresponding MR images of the brain.
View Article and Find Full Text PDFUnlabelled: We recently developed the radiotracer 4-[(3-iodophenyl)amino]-7-(2-[2-{2-(2-[2-{2-((18)F-fluoroethoxy)-ethoxy}-ethoxy]-ethoxy)-ethoxy}-ethoxy]-quinazoline-6-yl-acrylamide) ((18)F-PEG(6)-IPQA) for noninvasive detection of active mutant epidermal growth factor receptor kinase-expressing non-small cell lung cancer xenografts in rodents. In this study, we determined the pharmacokinetics, biodistribution, metabolism, and radiation dosimetry of (18)F-PEG(6)-IPQA in nonhuman primates.
Methods: Six rhesus macaques were injected intravenously with 141 ± 59.
Introduction: To facilitate the clinical translation of (18)F-fluoroacetate ((18)F-FACE), the pharmacokinetics, biodistribution, radiolabeled metabolites, radiation dosimetry, and pharmacological safety of diagnostic doses of (18)F-FACE were determined in non-human primates.
Methods: (18)F-FACE was synthesized using a custom-built automated synthesis module. Six rhesus monkeys (three of each sex) were injected intravenously with (18)F-FACE (165.