Cystic Fibrosis (CF), an inherited multi-system disease, is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) that disrupt its ability to secrete anions from epithelia. Recovery of functional anion secretion may be curative for CF, so different components of the ion transport machinery have become attractive therapeutic targets. Several members of the SLC26 ion transporter family have been linked to epithelial ion flux, some through putative functional interactions with CFTR.
View Article and Find Full Text PDFMouse models lupus nephritis (LN) have provided important insights into disease pathogenesis, although none have been able to recapitulate all features of the human disease. Using comprehensive longitudinal analyses, we characterized a novel accelerated mouse model of lupus using pristane treatment in SNF1 (SWR X NZB F1) lupus prone mice (pristane-SNF1 mice). Pristane treatment in SNF1 mice accelerated the onset and progression of proteinuria, autoantibody production, immune complex deposition and development of renal lesions.
View Article and Find Full Text PDFLysine-specific demethylase 1 (Lsd1/Aof2/Kdm1a), the first enzyme with specific lysine demethylase activity to be described, demethylates histone and non-histone proteins and is essential for mouse embryogenesis. Lsd1 interacts with numerous proteins through several different domains, most notably the tower domain, an extended helical structure that protrudes from the core of the protein. While there is evidence that Lsd1-interacting proteins regulate the activity and specificity of Lsd1, the significance and roles of such interactions in developmental processes remain largely unknown.
View Article and Find Full Text PDFLysine-specific demethylase 1 (LSD1/AOF2/KDM1A), the first enzyme with specific lysine demethylase activity to be described, demethylates histone and non-histone proteins and is essential for mouse embryogenesis. LSD1 interacts with numerous proteins through several different domains, most notably the tower domain, an extended helical structure that protrudes from the core of the protein. While there is evidence that LSD1-interacting proteins regulate the activity and specificity of LSD1, the significance and roles of such interactions in developmental processes remain largely unknown.
View Article and Find Full Text PDF