Publications by authors named "J Bahney"

The cellular composition of brains shows largely conserved, gradual evolutionary trends between species. In the primate spinal cord, however, the glia-neuron ratio was reported to be greatly increased over that in the rodent spinal cord. Here, we re-examined the cellular composition of the spinal cord of one human and one nonhuman primate species by employing two different counting methods, the isotropic fractionator and stereology.

View Article and Find Full Text PDF

For half a century, the human brain was believed to contain about 100 billion neurons and one trillion glial cells, with a glia:neuron ratio of 10:1. A new counting method, the isotropic fractionator, has challenged the notion that glia outnumber neurons and revived a question that was widely thought to have been resolved. The recently validated isotropic fractionator demonstrates a glia:neuron ratio of less than 1:1 and a total number of less than 100 billion glial cells in the human brain.

View Article and Find Full Text PDF

Background: The "isotropic fractionator" (IF) is a novel cell counting technique that homogenizes fixed tissue, recovers cell nuclei in solution, and samples and quantifies nuclei by extrapolation. Studies using this technique indicate that the ratio of glia to neurons in the human brain is approximately 1:1 rather than the 10:1 or 50:1 ratio previously assumed. Although some results obtained with the IF have been similar to those obtained by stereology, the IF has never been calibrated or validated.

View Article and Find Full Text PDF

Background: Inflammatory responses can include recruitment of cells of hematopoietic origin to the tunica muscularis. These cells can secrete a variety of factors which can reset the gain of smooth muscle cells (SMC) and influence motor patterns. Histamine (H), a major mediator in inflammation, is released by mast cells and exerts diverse effects in SMC by binding to H receptors.

View Article and Find Full Text PDF