Cancer treatment has traditionally focused on eliminating tumor cells but faces challenges such as resistance and toxicity. A promising direction involves targeting the tumor microenvironment using CAR T cell immunotherapy, which has shown potential for treating relapsed and refractory cancers but is limited by high costs, resistance, and toxicity, especially in solid tumors. The integration of nanotechnology into ICAM cell therapy, a concept we have named "CAR T nanosymbiosis", offers new opportunities to overcome these challenges.
View Article and Find Full Text PDFDetecting the Kirsten Rat Sarcoma Virus () gene mutation is significant for colorectal cancer (CRC) patients. Thegene encodes a protein involved in the epidermal growth factor receptor (EGFR) signaling pathway, and mutations in this gene can negatively impact the use of monoclonal antibodies in anti-EGFR therapy and affect treatment decisions. Currently, commonly used methods like next-generation sequencing (NGS) identifymutations but are expensive, time-consuming, and may not be suitable for every cancer patient sample.
View Article and Find Full Text PDFNervous system traumatic injuries are prevalent in our society, with a significant socioeconomic impact. Due to the highly complex structure of the neural tissue, the treatment of these injuries is still a challenge. Recently, 3D printing has emerged as a promising alternative for producing biomimetic scaffolds, which can lead to the restoration of neural tissue function.
View Article and Find Full Text PDF