Current diagnostic methods for prion diseases only work in late stages of the disease when neurodegeneration is irreversible. Therefore, biomarkers that can detect the disease before the onset of clinical symptoms are necessary. High-throughput discovery proteomics is of great interest in the search for such molecules.
View Article and Find Full Text PDFIntroduction: According to the neuroinflammatory hypothesis, a cytokine-mediated host innate immune response may be involved in the mechanisms that contribute to the process of neurodegeneration. Specifically, regarding prion diseases, some experimental murine models have evidenced an altered profile of inflammatory intermediaries. However, the local inflammatory response has rarely been assessed, and never in tissues from different natural models throughout the progression of neurodegeneration.
View Article and Find Full Text PDFIn neurodegenerative diseases, including prion diseases, cellular models arise as useful tools to study the pathogenic mechanisms occurring in these diseases and to assess the efficacy of potential therapeutic compounds. In the present study, a RNA-sequencing analysis of bone marrow-derived ovine mesenchymal stem cells (oBM-MSCs) exposed to scrapie brain homogenate was performed to try to unravel genes and pathways potentially involved in prion diseases and MSC response mechanisms to prions. The oBM-MSCs were cultured in three different conditions (inoculated with brain homogenate of scrapie-infected sheep, with brain homogenate of healthy sheep and in standard growth conditions without inoculum) that were analysed at two exposure times: 2 and 4 days post-inoculation (dpi).
View Article and Find Full Text PDF