Publications by authors named "J BASSET"

We demonstrate an efficient and continuous microwave photon-to-electron converter with large quantum efficiency (83%) and low dark current. These unique properties are enabled by the use of a high kinetic inductance disordered superconductor, granular aluminium, to enhance light-matter interaction and the coupling of microwave photons to electron tunneling processes. As a consequence of strong coupling, we observe both linear and nonlinear photon-assisted processes where two, three, and four photons are converted into a single electron at unprecedentedly low light intensities.

View Article and Find Full Text PDF

Recessive dystrophic epidermolysis bullosa (RDEB) is a rare severe hereditary skin disease characterized by skin and mucosa fragility, resulting in blister formation. The most severe complication in RDEB patients is the development of cutaneous squamous cell carcinoma (SCC), leading to premature death. There is a great deal of evidence suggesting a permissive tumor microenvironment (TME) as a driver of SCC development in RDEB patients.

View Article and Find Full Text PDF

We implemented radio frequency-assisted electrostatic force microscopy (RF-EFM) to investigate the electric field response of biaxially strained molybdenum disulfide (MoS) monolayers (MLs) in the form of mesoscopic bubbles, produced via hydrogen (H)-ion irradiation of the bulk crystal. MoS ML, a semiconducting transition metal dichalcogenide, has recently attracted significant attention due to its promising optoelectronic properties, further tunable by strain. Here, we take advantage of the RF excitation to distinguish the intrinsic quantum capacitance of the strained ML from that due to atomic scale defects, presumably sulfur vacancies or H-passivated sulfur vacancies.

View Article and Find Full Text PDF

The synthesis of heterogeneous Ti(IV)-based catalysts for ethylene polymerization following surface organometallic chemistry concepts is described. The unique feature of this catalyst arises from the silica support, KCC-1. It has (i) a 3D fibrous morphology that is essential to improve the diffusion of the reactants, and (ii) an aluminum-bound hydroxyl group, [(Si-O-Si)(Si-O-)Al-OH] 2, used as an anchoring site.

View Article and Find Full Text PDF

Nonprecious-metal heterogeneous catalysts with atomically dispersed active sites demonstrated high activity and selectivity in different reactions, and the rational design and large-scale preparation of such catalysts are of great interest but remain a huge challenge. Current approaches usually involve extremely high-temperature and tedious procedures. Here, we demonstrated a straightforward and scalable preparation strategy.

View Article and Find Full Text PDF