Chiral phases of matter, characterized by a definite handedness, abound in nature, ranging from the crystal structure of quartz to spiraling spin states in helical magnets. In 1T-TiSe_{2} a source of chirality has been proposed that stands apart from these classical examples as it arises from combined electronic charge and quantum orbital fluctuations. This may allow its chirality to be accessed and manipulated without imposing either structural or magnetic handedness.
View Article and Find Full Text PDFAbdom Radiol (NY)
October 2024
While altermagnetic materials are characterized by a vanishing net magnetic moment, their symmetry in principle allows for the existence of an anomalous Hall effect. Here, we introduce a model with altermagnetism in which the emergence of an anomalous Hall effect is driven by interactions. This model is grounded in a modified Kane-Mele framework with antiferromagnetic spin-spin correlations.
View Article and Find Full Text PDFAlthough chromium trihalides are widely regarded as a promising class of two-dimensional magnets for next-generation devices, an accurate description of their electronic structure and magnetic interactions has proven challenging to achieve. Here, we quantify electronic excitations and spin interactions in Cr ( = Cl, Br, I) using embedded many-body wavefunction calculations and fully generalized spin Hamiltonians. We find that the three trihalides feature comparable -shell excitations, consisting of a high-spin ground state lying 1.
View Article and Find Full Text PDF