Mitochondrial dysfunction is a hallmark of many genetic neurodegenerative diseases, but therapeutic options to reverse mitochondrial dysfunction are limited. While recent studies support the possibility of improving mitochondrial fusion/fission dynamics and motility to correct mitochondrial dysfunction and resulting neurodegeneration in Charcot-Marie-Tooth disease (CMT) and other neuropathies, the clinical utility of reported compounds and relevance of preclinical models are uncertain. Here, we describe motor and sensory neuron dysfunction characteristic of clinical CMT type 2 A in a CRISPR/Casp-engineered Mfn2 Thr105Met (T105M) mutant knock-in mouse.
View Article and Find Full Text PDFThe neural crest is a unique, transient stem cell population that is critical for craniofacial and ocular development. Understanding the genetics underlying the steps of neural crest development is essential for gaining insight into the pathogenesis of congenital eye diseases. The neural crest cells play an under-appreciated key role in patterning the neural epithelial-derived optic cup.
View Article and Find Full Text PDFThe zebrafish is as an important vertebrate animal model system for studying developmental processes, gene functions and signalling pathways. It is also used as a model system for the understanding of human developmental diseases including those related to the skeleton. However, surprisingly little is known about normal zebrafish skeletogenesis and osteogenesis.
View Article and Find Full Text PDFBackground: The vertebrate inner ear comprises mineralized elements, namely the otoliths (fishes) or the otoconia (mammals). These elements serve vestibular and auditory functions. The formation of otoconia and otoliths is described as a stepwise process, and in fish, it is generally divided into an aggregation of the otolith primordia from precursor particles and then a growth process that continues throughout life.
View Article and Find Full Text PDFThe fish ear stones (otoliths) consist mainly of calcium carbonate and have lower amounts of a proteinous matrix. This matrix consists of macromolecules, which directly control the biomineralization process. We analyzed the composition of this proteinous matrix by mass spectrometry in a shotgun approach.
View Article and Find Full Text PDF