Publications by authors named "J B Tonko"

Background: Among inherited cardiomyopathies involving the left ventricle, whether dilated or not, certain genotypes carry a well-established arrhythmic risk, notably manifested as sustained monomorphic ventricular tachycardia (SMVT). Nonetheless, the precise localization and electrophysiological profile of this substrate remain undisclosed across different genotypes.

Methods: Patients diagnosed with cardiomyopathy and left ventricle involvement due to high-risk genetic variants and SMVT treated by electrophysiological study were recruited from 18 European/US centers.

View Article and Find Full Text PDF

Background: Vector field heterogeneity (VFH) is a novel omnipolar metric to quantify local propagation heterogeneities that may identify functionally critical sites for ablation in scar-related ventricular tachycardia (VT).

Objective: This study aims to assess the diagnostic value of VFH to identify abnormal propagation patterns during ventricular substrate mapping and compare VFH in VT isthmus sites (IS), low-voltage bystander area (LVA) , and normal voltage areas (NVAa).

Methods: Substrate maps acquired with a 16-pole grid catheter in patients with scar-related VT were segmented into sites corresponding to IS, LVA, and NVA (defined as omnipolar voltages > and <1.

View Article and Find Full Text PDF
Article Synopsis
  • Alterations in repolarization gradients contribute significantly to the development of ventricular arrhythmias, especially in patients with varying heart conditions.
  • High-density repolarization mapping can enhance the understanding of these abnormalities and help localize arrhythmogenic areas more effectively during procedures like ablation.
  • Despite its potential benefits, repolarization mapping faces practical and technical challenges that limit its routine use, necessitating further research and improvements to integrate it into standard clinical practices.
View Article and Find Full Text PDF

Introduction: Atrial remodelling (AR) is the persistent change in atrial structure and/or function and contributes to the initiation, maintenance and progression of atrial fibrillation (AF) in a reciprocal self-perpetuating relationship. Left atrial (LA) size, geometry, fibrosis, wall thickness (LAWT) and ejection fraction (LAEF) have all been shown to vary with pathological atrial remodelling. The association of these global remodelling markers with each other for differentiating structural phenotypes in AF is not well investigated.

View Article and Find Full Text PDF