Using the e^{+}e^{-} collision data collected with the BESIII detector operating at the BEPCII collider, at center-of-mass energies from the threshold to 4.95 GeV, we present precise measurements of the cross section for the process e^{+}e^{-}→D_{s}^{+}D_{s}^{-} using a single-tag method. The resulting cross section line shape exhibits several new structures, thereby offering an input for a future coupled-channel analysis and model tests, which are critical to understand vector charmonium-like states with masses between 4 and 5 GeV.
View Article and Find Full Text PDFAdjuvants can enhance an immunological response, which is an important part of vaccine research. Pickering bubbles have been a mega-hit for biomedical applications, including visualization and targeted drug delivery. However, there have been no studies on Pickering bubbles as an immunological adjuvant, and the special properties and structures of Pickering bubbles may play an important role in immunization.
View Article and Find Full Text PDFType A GABA (γ-aminobutyric acid) receptors (GABA receptors) mediate most fast inhibitory signalling in the brain and are targets for drugs that treat epilepsy, anxiety, depression and insomnia and for anaesthetics. These receptors comprise a complex array of 19 related subunits, which form pentameric ligand-gated ion channels. The composition and structure of native GABA receptors in the human brain have been inferred from subunit localization in tissue, functional measurements and structural analysis from recombinant expression and in mice.
View Article and Find Full Text PDFNanocomposites of epoxy with FeO featuring dynamic disulfide bonds were fabricated. To facilitate the dispersion of FeO nanoparticles, we synthesized poly(ε-caprolactone)-grafted FeO nanoparticles, which were then incorporated into epoxy to generate robust interfacial interactions between epoxy and the inorganic nanoparticles. Through this approach, a fine dispersion of the inorganic nanoparticles in the epoxy matrix was successfully obtained.
View Article and Find Full Text PDFBackground: Anatomical variations of the recurrent motor branch (RMB) are at risk of injury during carpal tunnel release procedures. Previous studies have visualized the RMB using ultrasound (US) and magnetic resonance imaging (MRI) but have not compared the imaging capabilities of the two. Previous investigations have overlooked two specific types of carpal tunnel syndrome (CTS): simultaneous compression of the median nerve and the RMB and isolated compression of the latter.
View Article and Find Full Text PDF