Publications by authors named "J B Tarloff"

para-aminophenol (PAP) causes nephrotoxicity by biochemical mechanisms that have not been fully elucidated. PAP can undergo enzymatic or non-enzymatic oxidation to form reactive intermediates. Using modulators of reactive oxygen species (ROS), the role of ROS in PAP toxicity in LLC-PK(1) cells was investigated.

View Article and Find Full Text PDF

Lactate dehydrogenase (LDH) release is frequently used as an end-point for cytotoxicity studies. We have been unable to measure LDH release during studies using para-aminophenol (PAP) in LLC-PK(1) cells. When LLC-PK(1) cells were incubated with either PAP (0-10 mM) or menadione (0-1000 microM), viability was markedly reduced when assessed by alamar Blue or total LDH activity but not by release of LDH into the incubation medium.

View Article and Find Full Text PDF

Several chemicals, including para-aminophenol (PAP), produce kidney damage in the absence of hepatic damage. Selective nephrotoxicity may be related to the ability of the kidney to reabsorb filtered water, thereby raising the intraluminal concentration of toxicants and exposing tubular epithelial cells to higher concentrations than would be present in other tissues. The present experiments tested the hypothesis that hepatocytes and renal epithelial cells exposed to equivalent concentrations of PAP would be equally susceptible to toxicity.

View Article and Find Full Text PDF

LLC-PK1 cells are frequently used in toxicology research, but little information is available concerning the capacity of these cells to metabolize xenobiotics. We examined the expression and activities of cytochromes P450 (P450) 1A1/1A2 (CYP 1A1/1A2), 2E1 (CYP 2E1), flavin monooxygenase (FMO), 5-lipoxygenase (5-LO) and prostaglandin H synthase (PHS)-associated cyclooxygenase-1 (COX-1). We prepared S9 fractions from LLC-PK1 cells, rat liver, and rat kidney, and measured enzyme activities using ethoxyresorufin O-deethylation (EROD) for CYP 1A1/1A2 and ethoxycoumarin O-deethylation (ECOD) for CYP 2E1, benzydamine N-oxidation (BNO) for FMO, leukotriene B(4) (LTB(4)) formation for 5-LO, and thromboxane B(2) (TXB(2)) formation for COX-1 activities.

View Article and Find Full Text PDF

Alamar blue and MTT are indicators used to measure cytotoxicity of various chemicals in cultured cells. Both Alamar blue and MTT are reduced by mitochondrial enzymes. We observed enhanced fluorescence of Alamar blue when kidney epithelial cells were co-incubated with hepatic post-mitochondrial supernatant (S9) fractions as compared with cells incubated in the absence of S9 fractions.

View Article and Find Full Text PDF