Changes in phenology in response to ongoing climate change have been observed in numerous taxa around the world. Differing rates of phenological shifts across trophic levels have led to concerns that ecological interactions may become increasingly decoupled in time, with potential negative consequences for populations. Despite widespread evidence of phenological change and a broad body of supporting theory, large-scale multitaxa evidence for demographic consequences of phenological asynchrony remains elusive.
View Article and Find Full Text PDFQuantifying environment-morphology relationships is important not only for understanding the fundamental processes driving phenotypic diversity within and among species but also for predicting how species will respond to ongoing global change. Despite a clear set of expectations motivated by ecological theory, broad evidence in support of generalizable effects of abiotic conditions on spatial and temporal intraspecific morphological variation has been limited. Using standardized data from >250,000 captures of 105 landbird species, we assessed intraspecific shifts in the morphology of adult male birds since 1989 while simultaneously measuring spatial morphological gradients across the North American continent.
View Article and Find Full Text PDFThe demography and dynamics of migratory bird populations depend on patterns of movement and habitat quality across the annual cycle. We leveraged archival GPS-tagging data, climate data, remote-sensed vegetation data, and bird-banding data to better understand the dynamics of black-headed grosbeak () populations in two breeding regions, the coast and Central Valley of California (Coastal California) and the Sierra Nevada mountain range (Sierra Nevada), over 28 years (1992-2019). Drought conditions across the annual cycle and rainfall timing on the molting grounds influenced seasonal habitat characteristics, including vegetation greenness and phenology (maturity dates).
View Article and Find Full Text PDF