Publications by authors named "J B Santella"

To improve the metabolic stability profile of BMS-741672 (), we undertook a structure-activity relationship study in our trisubstituted cyclohexylamine series. This ultimately led to the identification of (BMS-753426) as a potent and orally bioavailable antagonist of CCR2. Compared to previous clinical candidate , the -butyl amine showed significant improvements in pharmacokinetic properties, with lower clearance and higher oral bioavailability.

View Article and Find Full Text PDF

We encountered a dilemma in the course of studying a series of antagonists of the G-protein coupled receptor CC chemokine receptor-2 (CCR2): compounds with polar C3 side chains exhibited good ion channel selectivity but poor oral bioavailability, whereas compounds with lipophilic C3 side chains exhibited good oral bioavailability in preclinical species but poor ion channel selectivity. Attempts to solve this through the direct modulation of physicochemical properties failed. However, the installation of a protonation-dependent conformational switching mechanism resolved the problem because it enabled a highly selective and relatively polar molecule to access a small population of a conformer with lower polar surface area and higher membrane permeability.

View Article and Find Full Text PDF

Introduction: Low intrinsic solubility leading to poor oral bioavailability is a common challenge in drug discovery that can often be overcome by formulation strategies, however, it remains a potential limitation that can pose challenges for early risk assessment and represent a significant obstacle to drug development. We identified a selective inhibitor (BMS-986126) of the IL-1 receptor-associated kinase 4 (IRAK4) with favorable properties as a lead candidate, but with unusually low intrinsic solubility of <1 μg/mL.

Methods: Conventional histopathology identified the issue of crystal formation in vivo.

View Article and Find Full Text PDF

The serine/threonine kinase IL-1R-associated kinase (IRAK)4 is a critical regulator of innate immunity. We have identified BMS-986126, a potent, highly selective inhibitor of IRAK4 kinase activity that demonstrates equipotent activity against multiple MyD88-dependent responses both in vitro and in vivo. BMS-986126 failed to inhibit assays downstream of MyD88-independent receptors, including the TNF receptor and TLR3.

View Article and Find Full Text PDF

As a member of the Janus (JAK) family of non-receptor tyrosine kinases, TYK2 mediates the signaling of pro-inflammatory cytokines including IL-12, IL-23 and type 1 interferon (IFN), and therefore represents an attractive potential target for treating the various immuno-inflammatory diseases in which these cytokines have been shown to play a role. Following up on our previous report that ligands to the pseudokinase domain (JH2) of TYK2 suppress cytokine-mediated receptor activation of the catalytic (JH1) domain, the imidazo[1,2-]pyridazine (IZP) was identified as a promising hit compound. Through iterative modification of each of the substituents of the IZP scaffold, the cellular potency was improved while maintaining selectivity over the JH1 domain.

View Article and Find Full Text PDF