Publications by authors named "J B Mazarati"

Background: Existing data on the prevalence of hepatitis C virus (HCV) genotypes and subtypes in Rwanda need to be strengthened. The aim of this study was to identify HCV genotypes and subtypes among HCV-infected patients, as well as their geographical distribution in Rwanda, and to identify the social and economic factors that could influence HCV epidemiology which would make it possible to target national preventive and management actions for infected patients.

Methods: This study included 560 patients with confirmed chronic HCV infection.

View Article and Find Full Text PDF
Article Synopsis
  • In 2014, a significant mutation linked to artemisinin resistance, known as K13 561H, was first detected in Rwanda, making it crucial to monitor its spread.
  • Researchers utilized advanced blood preservation and pooled sequencing methods to assess the frequency of this mutation across multiple sites in Rwanda and neighboring countries from May 2022 to March 2023.
  • Results showed that K13 561H and 675V mutations were prevalent in Rwanda, with concerning additional mutations emerging, signaling threats to malaria treatment efficacy and control efforts in the region.
View Article and Find Full Text PDF

Objective: To evaluate the use of antigen-based rapid diagnostic tests (Ag-RDTs) alongside a digital tool to deliver household-level COVID-19 testing by community health workers (CHWs), in line with Rwanda's ambition to decentralise COVID-19 testing.

Design: This was an operational pilot study to evaluate the impact and operational characteristics of using the digital e-ASCov tool combined with Ag-RDTs to support COVID-19 symptom screening and rapid testing by CHWs across eight districts in Rwanda. A total of 800 CHWs selected from both rural and urban areas were trained in delivering Ag-RDTs for COVID-19 testing and using the e-ASCOV application for data capture on a smartphone.

View Article and Find Full Text PDF

Background: Emerging artemisinin partial resistance and diagnostic resistance are a threat to malaria control in Africa. Plasmodium falciparum kelch13 (k13) propeller-domain mutations that confer artemisinin partial resistance have emerged in Africa. k13-561H was initially described at a frequency of 7.

View Article and Find Full Text PDF
Article Synopsis
  • The first detection of the K13 artemisinin resistance mutation 561H occurred in Rwanda, highlighting the need for ongoing surveillance in East Africa as new mutations emerge.
  • A study involved collecting malaria-positive samples from 39 health facilities across Rwanda, Uganda, Tanzania, and the DRC, revealing high frequencies of mutations 561H and 675V in Rwanda, indicating significant resistance levels.
  • The presence of candidate mutations, alongside other known resistance markers, suggests a concerning trend of increasing drug resistance in the region, potentially threatening malaria treatment effectiveness.
View Article and Find Full Text PDF