AJNR Am J Neuroradiol
August 2023
Background And Purpose: Automatic brain parcellation is typically performed on dedicated MR imaging sequences, which require valuable examination time. In this study, a 3D MR imaging quantification sequence to retrieve R and R relaxation rates and proton density maps was used to synthesize a T1-weighted image stack for brain volume measurement, thereby combining image data for multiple purposes. The repeatability and reproducibility of using the conventional and synthetic input data were evaluated.
View Article and Find Full Text PDFMalignant gliomas are primary brain tumours with an infiltrative growth pattern, often with contrast enhancement on magnetic resonance imaging (MRI). However, it is well known that tumour infiltration extends beyond the visible contrast enhancement. The aim of this study was to investigate if there is contrast enhancement not detected visually in the peritumoral oedema of malignant gliomas by using relaxometry with synthetic MRI.
View Article and Find Full Text PDFPurpose To test the hypothesis that synthetic MRI of the knee generates accurate and repeatable quantitative maps and produces morphologic MR images with similar quality and detection rates of structural abnormalities than does conventional MRI. Materials and Methods Data were collected prospectively between January 2017 and April 2018 and were retrospectively analyzed. An International Society for Magnetic Resonance in Medicine-National Institute of Standards and Technology phantom was used to determine the accuracy of T1, T2, and proton density (PD) quantification.
View Article and Find Full Text PDFBackground And Purpose: The presence of edema will result in increased brain volume, which may obscure progressing brain atrophy. Similarly, treatment-induced edema reduction may appear as accelerated brain tissue loss (pseudoatrophy). The purpose of this study was to correlate brain tissue properties to brain volume, to investigate the possibilities for edema correction and the resulting improvement of the precision of automated brain volume measurements.
View Article and Find Full Text PDFBackground And Purpose: Damage to the blood-brain barrier with subsequent contrast enhancement is a hallmark of glioblastoma. Non-enhancing tumor invasion into the peritumoral edema is, however, not usually visible on conventional magnetic resonance imaging. New quantitative techniques using relaxometry offer additional information about tissue properties.
View Article and Find Full Text PDF