Electrochemical conversion of CO into methanol has received extensive attention in recent years since methanol is an efficient energy carrier and industrial feedstock. However, the selectivity to methanol remains unsatisfied. In this work, Sb-doped CsCuI is first and rationally developed for CO electrochemical reduction, achieving remarkable high selectivity of methanol.
View Article and Find Full Text PDFBackground: While mutations in the gene play important roles in human breast carcinogenesis, gene alterations are recognized as actionable mutations for clinical cancer treatment. We aimed to elucidate the role of PIK3R1 in cell proliferation on breast carcinoma and to correlate the PIK3R1 expression with patients' outcome using human tumor tissue arrays.
Methods: Using human BT-474 (estrogen receptor (ER)+/human epidermal growth factor receptor 2 (HER2)-high) breast carcinoma cell line as model, the role of PIK3R1 in cell proliferation was elucidated by knock-down of the gene (ΔPIK3R1) in this cell line.
Protein catalysis and allostery require the atomic-level orchestration and motion of residues and ligand, solvent and protein effector molecules. However, the ability to design protein activity through precise protein-solvent cooperative interactions has not yet been demonstrated. Here we report the design of 14 membrane receptors that catalyse G protein nucleotide exchange through diverse engineered allosteric pathways mediated by cooperative networks of intraprotein, protein-ligand and -solvent molecule interactions.
View Article and Find Full Text PDFIn this study, we aimed to develop ion-responsive and biocompatible alginate-capped nanoceria (Ce-ALG) for β-1,3-glucan (i.e., wound healing agent) delivery and corneal abrasion (CA) treatment.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
A synthetic biology approach using a robust reconstitution system in Escherichia coli enables the identification of plant ubiquitin-like proteases responsible for removing the small ubiquitin-like modifier (SUMO) post-translational modifications from specific protein substrates.
View Article and Find Full Text PDF