Publications by authors named "J B Garcia Moya"

Objectives: The aim was to assess the content validity of a new field test on general and soccer-specific motor skills before return to play.

Methods: The RONDO-TEST was assessed by a Delphi panel for its content validity. It included a survey to evaluate 16 items related to the test consisting of four 10 m lines which cross over at their mid-point, resulting in eight 5 m sectors that include locomotor skills (speeding, moving sideways, side cutting, and jumping) and soccer-specific technical skills (dribbling, slalom course, and kicking/passing).

View Article and Find Full Text PDF

The interfacial adhesion between transition metal dichalcogenides (TMDs) and the growth substrate significantly influences the employment of flakes in various applications. Most previous studies have focused on MoS and graphene, particularly their interaction with SiO/Si substrates. In this work, the adhesion strength of CVD-grown bilayer WS is directly measured using the nano scratch technique on three different substrates-Sapphire, SiO/Si, and fused quartz.

View Article and Find Full Text PDF

Background: Vasculogenic therapies explored for the treatment of peripheral artery disease (PAD) have encountered minimal success in clinical trials. Addressing this, B55α, an isoform of protein phosphatase 2A (PP2A), emerges as pivotal in vessel remodeling through activation of hypoxia-inducible factor 1α (HIF-1α). This study delves into the pharmacological profile of VCE-004.

View Article and Find Full Text PDF

With the recent strive to develop novel quantum materials, including two-dimensional nanosheets, alkali-layered intercalated materials have found a new purpose as starting materials for such compounds. Enriching the library of alkali materials, we present a solid-state synthesis for preparing NaWS (1̅, No. 2) and RbWS (2/, No.

View Article and Find Full Text PDF
Article Synopsis
  • Flat bands can lead to unique physical properties like superconductivity and many-body effects, and their behavior depends on the quantum metric, which helps distinguish between interesting correlated physics and less significant dangling bonds.
  • Geometric structures, such as the kagome lattice, show promise for creating correlated flat bands, though real materials often add complexity, making quantum geometry crucial for understanding band properties.
  • Researchers used a soft-chemical process to oxidize Ni-kagome material CsNiS, significantly reducing its resistance, yet it remained insulating without any phase transition, hinting at a mysterious correlated insulating state.
View Article and Find Full Text PDF