Recent findings have improved our understanding of the multifactorial nature of AD. While in early asymptomatic stages of AD, increased amyloid-β synthesis and tau hyperphosphorylation play a key role, while in the latter stages of the disease, numerous dysfunctions of homeostatic mechanisms in neurons, glial cells, and cerebrovascular endothelium determine the rate of progression of clinical symptoms. The main driving forces of advanced neurodegeneration include increased inflammatory reactions in neurons and glial cells, oxidative stress, deficiencies in neurotrophic growth and regenerative capacity of neurons, brain insulin resistance with disturbed metabolism in neurons, or reduction of the activity of the Wnt-β catenin pathway, which should integrate the homeostatic mechanisms of brain tissue.
View Article and Find Full Text PDFThree ferrocenes used in glucose biosensor construction were tested in the aspect of genotoxic and immunotoxic activities. All three ferrocenes were not mutagenic in the standard bacterial Ames test. Equally in the Sister Chromatid Exchanges test in human lymphocyte cultures, the genotoxic action of tested ferrocenes could be excluded.
View Article and Find Full Text PDF