Publications by authors named "J B Beckwith"

Super-resolution and single-molecule microscopies have been increasingly applied to complex biological systems. A major challenge of these approaches is that fluorescent puncta must be detected in the low signal, high noise, heterogeneous background environments of cells and tissue. We present RASP, Radiality Analysis of Single Puncta, a bioimaging-segmentation method that solves this problem.

View Article and Find Full Text PDF

Volumetric super-resolution microscopy typically encodes the 3D position of single-molecule fluorescence into a 2D image by changing the shape of the point spread function (PSF) as a function of depth. However, the resulting large and complex PSF spatial footprints reduce biological throughput and applicability by requiring lower labeling densities to avoid overlapping fluorescent signals. We quantitatively compare the density dependence of single-molecule light field microscopy (SMLFM) to other 3D PSFs (astigmatism, double helix and tetrapod) showing that SMLFM enables an order-of-magnitude speed improvement compared to the double helix PSF by resolving overlapping emitters through parallax.

View Article and Find Full Text PDF

Globally, wildfires are increasing in extent, frequency, and severity. Although global climate change is a major driver and large-scale governance interventions are essential, focusing on governance at smaller scales is of great importance for fostering resilience to wildfires. Inherent tensions in managing wildfire risk are evident at such scales, as objectives and mandates may conflict, and trade-offs and impacts vary across ecosystems and communities.

View Article and Find Full Text PDF

Unlabelled: Multiple myeloma (MM) develops from well-defined precursor stages; however, invasive bone marrow (BM) biopsy limits screening and monitoring strategies for patients. We enumerated circulating tumor cells (CTC) from 261 patients (84 monoclonal gammopathy of undetermined significance, 155 smoldering multiple myeloma, and 22 MM), with neoplastic cells detected in 84%. We developed a novel approach, MinimuMM-seq, which enables the detection of translocations and copy-number abnormalities through whole-genome sequencing of highly pure CTCs.

View Article and Find Full Text PDF