Photochemical processes are typically not incorporated in screening-level substance risk assessments due to the complexity of modeling sunlight co-exposures and resulting interactions on environmental fate and effects. However, for many substances, sunlight exerts a profound influence on environmental degradation rates and ecotoxicities. Recent modeling advances provide an improved technical basis for estimating the effect of sunlight in modulating both substance exposure and toxicity in the aquatic environment.
View Article and Find Full Text PDFOcean disposal of industrial waste from technical DDT [mainly 1,1'-(2,2,2-trichloroethane-1,1-diyl)bis(4-chlorobenzene), or 4,4'-DDT] manufacture occurred historically in the Southern California Bight. However, the paucity of historical records highlights uncertainties as to the mode, location, and timing of disposal or ongoing ecological effects of these wastes. This study combines sampling, chemical analysis, and numerical modeling of deep San Pedro Basin sediments revealing substantial DDT contamination that extends at least 25 km from the mainland.
View Article and Find Full Text PDFPetroleum substances, as archetypical UVCBs (substances of unknown or variable composition, complex reaction products, or biological substances), pose a challenge for chemical risk assessment as they contain hundreds to thousands of individual constituents. It is particularly challenging to determine the biodegradability of petroleum substances since each constituent behaves differently. Testing the whole substance provides an average biodegradation, but it would be effectively impossible to obtain all constituents and test them individually.
View Article and Find Full Text PDFDeepwater hydrocarbon releases experience complex chemical and physical processes. To assess simplifications of these processes on model predictions, we present a sensitivity analysis using simulations for the Deepwater Horizon oil spill. We compare the buoyant multiphase plume metrics (trap height, rise time etc), the hydrocarbon mass flowrates at the near-field plume termination and their mass fractions dissolved in the water column and reaching the water surface.
View Article and Find Full Text PDF