Publications by authors named "J Aylett-Bullock"

Contact matrices are an important ingredient in age-structured epidemic models to inform the simulated spread of the disease between subgroups of the population. These matrices are generally derived using resource-intensive diary-based surveys and few exist in the Global South or tailored to vulnerable populations. In particular, no contact matrices exist for refugee settlements-locations under-served by epidemic models in general.

View Article and Find Full Text PDF

We analyze JUNE: a detailed model of COVID-19 transmission with high spatial and demographic resolution, developed as part of the RAMP initiative. JUNE requires substantial computational resources to evaluate, making model calibration and general uncertainty analysis extremely challenging. We describe and employ the uncertainty quantification approaches of Bayes linear emulation and history matching to mimic JUNE and to perform a global parameter search, hence identifying regions of parameter space that produce acceptable matches to observed data, and demonstrating the capability of such methods.

View Article and Find Full Text PDF

The spread of infectious diseases such as COVID-19 presents many challenges to healthcare systems and infrastructures across the world, exacerbating inequalities and leaving the world's most vulnerable populations at risk. Epidemiological modelling is vital to guiding evidence-informed or data-driven decision making. In forced displacement contexts, and in particular refugee and internally displaced people (IDP) settlements, it meets several challenges including data availability and quality, the applicability of existing models to those contexts, the accurate modelling of cultural differences or specificities of those operational settings, the communication of results and uncertainties, as well as the alignment of strategic goals between diverse partners in complex situations.

View Article and Find Full Text PDF

The spread of infectious diseases such as COVID-19 presents many challenges to healthcare systems and infrastructures across the world, exacerbating inequalities and leaving the world's most vulnerable populations most affected. Given their density and available infrastructure, refugee and internally displaced person (IDP) settlements can be particularly susceptible to disease spread. In this paper we present an agent-based modeling approach to simulating the spread of disease in refugee and IDP settlements under various non-pharmaceutical intervention strategies.

View Article and Find Full Text PDF

We introduce June, an open-source framework for the detailed simulation of epidemics on the basis of social interactions in a virtual population constructed from geographically granular census data, reflecting age, sex, ethnicity and socio-economic indicators. Interactions between individuals are modelled in groups of various sizes and properties, such as households, schools and workplaces, and other social activities using social mixing matrices. June provides a suite of flexible parametrizations that describe infectious diseases, how they are transmitted and affect contaminated individuals.

View Article and Find Full Text PDF