Although it is well known that high-frequency stimulation (HFS) of the subthalamic nucleus (STN) alleviates the cardinal symptoms of Parkinson's disease, the underlying mechanisms are not fully understood. We investigated the effect of stimulation from low to high frequencies on rat STN neurons in naive and dopamine-depleted slices using whole-cell, current-clamp techniques and on-line artifact suppression. Stimulation at 10 Hz evoked 10 Hz single spikes but did not significantly modify ongoing STN activity.
View Article and Find Full Text PDFA number of cortical motor areas have been identified on the medial wall of the hemisphere in monkeys. However, their specific role in motor control remains unclear. In this study, we sought to describe and compare the functional properties of the presupplementary (pre-SMA) and rostral cingulate (CMAr) motor areas in two monkeys performing a visually instructed, delayed, sequential movement.
View Article and Find Full Text PDFThe effect of high-frequency stimulation (HFS) of the subthalamic nucleus (STN) was analyzed with patch-clamp techniques (whole cell configuration, current- and voltage-clamp modes) in rat STN slices in vitro. A brief tetanus, consisting of 100-micros bipolar stimuli at a frequency of 100--250 Hz during 1 min, produced a full blockade of ongoing STN activity whether it was in the tonic or bursting mode. This HFS-induced silence lasted around 6 min after the end of stimulation, was frequency dependent, could be repeated without alteration, and was not synaptically induced as it was still observed in the presence of blockers of ionotropic GABA and glutamate receptors or in the presence of cobalt at a concentration (2 mM) that blocks voltage-gated Ca(2+) channels and synaptic transmission.
View Article and Find Full Text PDFCalcium seems to be a major second messenger involved in the regulation of prostatic cell functions, but the mechanisms underlying its control are poorly understood. We investigated spatiotemporal aspects of Ca2+ signals in the LNCaP cell line, a model of androgen-dependent prostatic cells, by using non-invasive external electric field pulses that hyperpolarize the anode facing membrane and depolarize the membrane facing the cathode. Using high-speed fluo-3 confocal imaging, we found that an electric field pulse (10-15 V/cm, 1-5 mA, 5 ms) initiated rapidly, at the hyperpolarized end of the cell, a propagated [Ca2+]i wave which spread through the cell with a constant amplitude and an average velocity of about 20 microns/s.
View Article and Find Full Text PDF