Introduction: Autosomal recessive spinocerebellar ataxia type 8 (ARCA1/SCAR8) is caused by mutations of the SYNE1 gene. The disease was initially described in families from Quebec (Canada) with a phenotype of pure cerebellar syndrome, but in recent years has been reported with a more variable clinical phenotype in other countries. Cases have recently been described of muscular dystrophy, arthrogryposis, and cardiomyopathy due to SYNE1 mutations.
View Article and Find Full Text PDFBackground: In rare disorders diagnosis may be delayed due to limited awareness and unspecific presenting symptoms. Herein, we address the issue of diagnostic delay in Friedreich's Ataxia (FRDA), a genetic disorder usually caused by homozygous GAA-repeat expansions.
Methods: Six hundred eleven genetically confirmed FRDA patients were recruited within a multicentric natural history study conducted by the EFACTS (European FRDA Consortium for Translational Studies, ClinicalTrials.
Introduction: Autosomal recessive spinocerebellar ataxia type 8 (ARCA1/SCAR8) is caused by mutations of the SYNE1 gene. The disease was initially described in families from Quebec (Canada) with a phenotype of pure cerebellar syndrome, but in recent years has been reported with a more variable clinical phenotype in other countries. Cases have recently been described of muscular dystrophy, arthrogryposis, and cardiomyopathy due to SYNE1 mutations.
View Article and Find Full Text PDFBackground: Sensitive outcome measures for clinical trials on cerebellar ataxias are lacking. Most cerebellar ataxias progress very slowly and quantitative measurements are required to evaluate cerebellar dysfunction.
Methods: We evaluated two scales for rating cerebellar ataxias: the Composite Cerebellar Functional Severity (CCFS) Scale and Scale for the Assessment and Rating of Ataxia (SARA), in patients with spinocerebellar ataxia (SCA) and controls.