Batteries based on sulfur cathodes offer a promising energy storage solution due to their potential for high performance, cost-effectiveness, and sustainability. However, commercial viability is challenged by issues such as polysulfide migration, volume changes, uneven phase nucleation, limited ion transport, and sluggish sulfur redox kinetics. Addressing these challenges requires insights into the structural, morphological, and chemical evolution of phases, the associated volume changes and internal stresses, and ion and polysulfide diffusion within the battery.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Lithium-sulfur batteries (LSBs) are among the most promising next-generation energy storage technologies. However, a slow Li-S reaction kinetics at the LSB cathode limit their energy and power densities. To address these challenges, this study introduces an anionic-doped transition metal chalcogenide as an effective catalyst to accelerate the Li-S reaction.
View Article and Find Full Text PDFThe electrochemical carbon dioxide reduction reaction (eCORR) using nitrogen-doped carbon (N-C) materials offers a promising and cost-effective approach to global carbon neutrality. Regulating the porosity of N-C materials can potentially increase the catalytic performance by suppressing the concurrence of the hydrogen evolution reaction (HER). However, the augmentation of porosity usually alters the active sites or the chemical composition of catalysts, resulting in intertwined influences of various structural factors and catalytic performance.
View Article and Find Full Text PDFThe work unravels the previously unexplored atomic-scale mechanism involving the interaction of phonons with crystal homointerfaces. Silicon nanowires with engineered isotopic content and crystal phases were chosen for this investigation. Crystal polytypism, manifested by the presence of both diamond cubic and rhombohedral phases within the same nanowire, provided a testbed to study the impact of phase homointerfaces on phonon transport.
View Article and Find Full Text PDF