AlphaFold2 (ref. ) has revolutionized structural biology by accurately predicting single structures of proteins. However, a protein's biological function often depends on multiple conformational substates, and disease-causing point mutations often cause population changes within these substates.
View Article and Find Full Text PDF5-Aminolevulinic acid (ALA) is the first committed substrate of tetrapyrrole biosynthesis and is formed from glutamyl-tRNA by two enzymatic steps. Glutamyl-tRNA reductase (GluTR) as the first enzyme of ALA synthesis is encoded by HEMA genes and tightly regulated at the transcriptional and posttranslational levels. Here, we show that the caseinolytic protease (Clp) substrate adaptor ClpS1 and the ClpC1 chaperone as well as the GluTR-binding protein (GBP) interact with the N terminus of GluTR Loss-of function mutants of ClpR2 and ClpC1 proteins show increased GluTR stability, whereas absence of GBP results in decreased GluTR stability.
View Article and Find Full Text PDFClp proteases are found in prokaryotes, mitochondria, and plastids where they play crucial roles in maintaining protein homeostasis (proteostasis). The plant plastid Clp machinery comprises a hetero-oligomeric ClpPRT proteolytic core, ATP-dependent chaperones ClpC and ClpD, and an adaptor protein, ClpS1. ClpS1 selects substrates to the ClpPR protease-ClpC chaperone complex for degradation, but the underlying substrate recognition and delivery mechanisms are currently unclear.
View Article and Find Full Text PDFArabidopsis HEMA1 and HEMA2 encode glutamyl-tRNA reductase (GluTR) 1 and 2, the two isoforms of the initial enzyme of tetrapyrrole biosynthesis. HEMA1 is dominantly expressed in photosynthetic tissue, while HEMA2 shows low constitutive expression and is induced upon stress treatments. We introduce a new HEMA1 knockout mutant which grows only heterotrophically on MS (Murashige and Skoog) medium at low light, indicating that the remaining GluTR2 does not sufficiently compensate for the extensive needs of metabolic precursors for Chl.
View Article and Find Full Text PDFWhile uniparental transmission of mtDNA is widespread and dominating in eukaryotes leaving mutation as the major source of genotypic diversity, recently, biparental inheritance of mitochondrial genes has been demonstrated in reciprocal crosses of Pelargonium zonale and P. inquinans. The thereby arising heteroplasmy carries the potential for recombination between mtDNAs of different descent, i.
View Article and Find Full Text PDF