Publications by authors named "J Antonio Barcena"

Peroxiredoxin 6 (PRDX6) is a multifunctional enzyme involved in phospholipid peroxide repair and metabolism. In this study we investigated the global lipid composition of a human hepatocarcinoma cell line SNU475 lacking PRDX6 and lipid related cellular processes. There was a general decrease in multiple lipids species upon loss of PRDX6, in particular sphingomyelins and acylcarnitines, consistent with previously observed alterations in cell signaling pathways and mitochondrial dysfunction.

View Article and Find Full Text PDF
Article Synopsis
  • Myxoma (MYXV) and rabbit hemorrhagic disease (RHDV) viruses are significant threats to European rabbits, which are now considered 'Endangered' in their native habitat.
  • The study focused on evaluating the effectiveness of dried blood spots (DBS) for serological surveys of these viruses in European rabbits by comparing DBS to traditional serum samples.
  • Results showed a high level of agreement between the two methods, with DBS demonstrating strong diagnostic sensitivity and perfect specificity for both MYXV and RHDV, confirming its viability for monitoring these diseases in the wild rabbit population.
View Article and Find Full Text PDF

Peroxiredoxin 6 (PRDX6) is an atypical member of the peroxiredoxin family that presents not only peroxidase but also phospholipase A2 and lysophosphatidylcholine acyl transferase activities able to act on lipid hydroperoxides of cell membranes. It has been associated with the proliferation and invasive capacity of different tumoral cells including colorectal cancer cells, although the effect of its removal in these cells has not been yet studied. Here, using CRISPR/Cas9 technology, we constructed an HCT116 colorectal cancer cell line knockout for PRDX6 to study whether the mechanisms described for other cancer cells in terms of proliferation, migration, and invasiveness also apply in this tumoral cell line.

View Article and Find Full Text PDF

The NADPH oxidase 1 (NOX1) complex formed by proteins NOX1, p22phox, NOXO1, NOXA1, and RAC1 plays an important role in the generation of superoxide and other reactive oxygen species (ROS) which are involved in normal and pathological cell functions due to their effects on diverse cell signaling pathways. Cell migration and invasiveness are at the origin of tumor metastasis during cancer progression which involves a process of cellular de-differentiation known as the epithelial-mesenchymal transition (EMT). During EMT cells lose their polarized epithelial phenotype and express mesenchymal marker proteins that enable cytoskeletal rearrangements promoting cell migration, expression and activation of matrix metalloproteinases (MMPs), tissue remodeling, and cell invasion during metastasis.

View Article and Find Full Text PDF